Skip to content
    from matplotlib import pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable

import numpy as np
from scipy.optimize import curve_fit
from scipy.integrate import quad

from common import draw_classic_axes, configure_plotting

configure_plotting()
  

Solutions for lecture 1 exercises

Warm-up exercises

  1. An ideal gas only contains 3 positional degrees of freedom.
  2. C=2kB.
  3. See image below (with T1<T2)
  4. Minus sign in the exponent. This would result in nB(T=0)=1, which is not physical.
  5. See plot with slider
fig, ax = plt.subplots()
omega = np.linspace(0.1, 3)
T = [1,2]
ax.plot(omega, 1/(np.exp(omega/T[0]) - 1), label = r'$T_1$')
ax.plot(omega, 1/(np.exp(omega/T[1]) - 1), label = r'$T_2$')
ax.set_ylim([0,3])
ax.set_xlim([0,3])
ax.set_xlabel('$\hbar \omega$')
ax.set_xticks([0])
ax.set_xticklabels(['$0$'])
ax.set_ylabel('$n_B$')
ax.set_yticks([0,1, 2])
ax.set_yticklabels(['$0$','$1$', '$2$'])
ax.legend()
draw_classic_axes(ax, xlabeloffset=.2)

png

Exercise 1: Heat capacity of a classical oscillator.

  1. The answer is

    Z=dpdxeβ2mp2βk2x2=2πmβ2πβk=2πβmk,

    where we used eαx2=πα.

2.

$$
\langle E \rangle = -\frac{1}{Z}\frac{\partial Z}{\partial \beta} = \frac{1}{\beta}
$$

3. C=ET=kB

The heat capacity is temperature independent.

Exercise 2: Quantum harmonic oscillator.

1.

$$
Z = \sum_{n = 0}^{\infty} e^{-\beta\hbar\omega(n + 1/2)} = e^{-\beta\hbar\omega/2}\frac{1}{1 - e^{-\beta\hbar\omega}} = \frac{1}{2\sinh(\beta\hbar\omega/2)},
$$

where we used $\sum_{n = 0}^{\infty}r^n = \frac{1}{1 - r}$.

2.

$$
\langle E\rangle = -\frac{1}{Z}\frac{\partial Z}{\partial\beta} = \frac{\hbar\omega}{2}\coth\frac{\beta\hbar\omega}{2} = \hbar\omega\left(\frac{1}{e^{\beta\hbar\omega} - 1} + \frac{1}{2}\right) = \hbar\omega\left(n_B(\beta\hbar\omega) + \frac{1}{2}\right).
$$

3.

$$
C = \frac{\partial \langle E\rangle}{\partial T} = \frac{\partial\langle E\rangle}{\partial\beta}\frac{\partial\beta}{\partial T} = k_B(\beta\hbar\omega)^2\frac{e^{\beta\hbar\omega}}{(e^{\beta\hbar\omega} - 1)^2}.
$$

In the high temperature limit β0 and eβω1+βω, so CkB which is the same result as in Exercise 1.3.

  1. Compare your result with the plot with the slider. Did you correctly indicate the where the Einstein temperature is?

5.

$$
\langle n\rangle = \frac{1}{Z}\sum_{n = 0}^{\infty} ne^{-\beta\hbar\omega(n + 1/2)} = 2\frac{e^{\beta\hbar\omega/2} - e^{-\beta\hbar\omega/2}}{2}e^{-\beta\hbar\omega/2}\frac{e^{-\beta\hbar\omega}}{(1 - e^{-\beta\hbar\omega})^2} = \frac{1}{e^{\beta\hbar\omega} - 1},
$$

where we used $\sum_{n = 0}^{\infty}nr^n = \frac{r}{(1 - r)^2}$.

Exercise 3: Total heat capacity of a diatomic material.

  1. Use the formula ω=km.

  2. Energy per atom is given by

    E=N6LiNω6Li(2+1/2)+N7LiNω7Li(4+1/2).
  3. Energy per atom is given by

    E=N6LiNω6Li(nB(βω6Li)+12)+N7LiNω7Li(nB(βω7Li)+12).
  4. Heat capacity per atom is given by

    C=N6LiNC6Li+N7LiNC7Li,

where the heat capacities are calculated with the formula from Excercise 2.4.