Skip to content
    from matplotlib import pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable

import numpy as np
from scipy.optimize import curve_fit
from scipy.integrate import quad

from common import draw_classic_axes, configure_plotting

configure_plotting()
  

Solutions for lecture 2 exercises

warm-up exercises

  1. For low T, 1/T. The heat capacity is then given as:

    ClowT9NkB(TTD)30x4ex(ex1)2dx.
  2. See plot below (shown for TD,1<TD,2)

  3. The polarization is related to the direction of the amplitudes of the waves with respect to the direction of the wave. In 3D, there are only 3 different amplitude directions possible.
  4. kxky02πdθ0kdk=2π0kdk
  5. The Debye frequency ωD.

  6. The wavelength is of the order of the interatomic spacing:

    λ=(43π)1/3a.
fig, ax = plt.subplots()
T = np.linspace(0.1, 3)
T_D = [1,2]
ax.plot(T, (T/T_D[0])**3, 'b-', label = r'$T_{D,1}$')
ax.plot(T, (T/T_D[1])**3, 'r-', label = r'$T_{D,2}$')
ax.set_ylim([0,3])
ax.set_xlim([0,3])
ax.set_xlabel('$T$')
ax.set_xticks([0])
ax.set_xticklabels(['$0$'])
ax.set_ylabel('$C$')
ax.set_yticks([0])
ax.set_yticklabels(['$0$'])
ax.legend();

png

Exercise 1: Debye model: concepts.

  1. k=4πL and k=4πL.
  2. The number of states per k or per frequency. 4.

    g(ω)=dNdω=dNdkdkdω=1vdNdk.

    We assume that in d dimensions there are d polarizations.

For 1D we have that N=L2πkkdk, hence g(ω)=Lπv.

For 2D we have that N=2(L2π)2d2k=2(L2π)22πkdk, hence g(ω)=L2ωπv2.

For 3D we have that N=3(L2π)3d3k=3(L2π)34πk2dk, hence g(ω)=3L3ω22π2v3.

Exercise 2: Debye model in 2D.

  1. See lecture notes. 2.

    E=0ωDg(ω)ω(1eβω1+12)dω=L2πv22β30βωDx2ex1dx+C.
  2. High temperature implies β0, hence E=L2πv22β3(βωD)22+C, and then C=kBL2ωD22πv2=2NkB. We've used the value for ωD calculated from 2N=0ωDg(ω)dω.

  3. In the low temperature limit we have that β, hence EL2πv22β30x2ex1dx+C=2ζ(3)L2πv22β3+C. Finally C=6ζ(3)kB3L2πv22T2. We used the fact that 0x2ex1dx=2ζ(3) where ζ is the Riemann zeta function.

Exercise 3: Different phonon modes.

1.

\begin{gather}
g(\omega) = \sum_{\text{polarizations}}\frac{dN}{dk}\frac{dk}{d\omega} = \left(\frac{L}{2\pi}\right)^3\sum_{\text{polarizations}}4\pi k^2\frac{dk}{d\omega} = \frac{L^3}{2\pi^2}\left(\frac{2}{v_\perp^3} + \frac{1}{v_\parallel^3}\right)\omega^2,\\
E = \int_{0}^{\omega_D}g(\omega)\hbar\omega\left(\frac{1}{e^{\beta\hbar\omega} - 1} + \frac{1}{2}\right)d\omega = \frac{L^3}{2\pi^2\hbar^3\beta^4}\left(\frac{2}{v_\perp^3} + \frac{1}{v_\parallel^3}\right)\int_{0}^{\beta\hbar\omega_D}\frac{x^3}{e^{x} - 1}dx + C.
\end{gather}
  1. Note that we can get ωD from 3N=0ωDg(ω) so everything cancels as usual and we are left with the Dulong-Petit law C=3NkB.
  2. In the low temperature limit we have that C2π2kB4L3153(2v3+1v3)T3. We used that 0x3ex1dx=π415.

Exercise 4: Anisotropic sound velocities.

E=3(L2π)3d3kω(k)(nB(βω(k))+12)=3(L2π)31vxvyvzd3κκeβκ1+C,

where we used the substitutions κx=kxvx,κy=kyvy,κz=kzvz. Finally

E=3L32π21vxvyvz0κDdκκ3eβκ1+C=3L32π23β41vxvyvz0βκDdxx3ex1+C,

hence C=ET=6kB4L3T3π231vxvyvz0βκDdxx3ex1. We see that the result is similar to the one with the linear dispersion, the only difference is the factor 1/vxvyvz instead of 1/v3.