Solutions for LCAO model exercises
Question 1
See lecture notes.
The atomic number of Tungsten is 74:
1 s 2 2 s 2 2 p 6 3 s 2 3 p 6 4 s 2 3 d 10 4 p 6 5 s 2 4 d 10 5 p 6 6 s 2 4 f 14 5 d 4
Cu = [ Ar ] 4 s 2 3 d 9 Pd = [ Kr ] 5 s 2 4 d 8 Ag = [ Kr ] 5 s 2 4 d 9 Au = [ Xe ] 6 s 2 4 f 14 5 d 9
Question 2
$$
\psi(x) =
\begin{cases}
&\sqrt{κ}e^{κ(x-x_1)}, xx_1
\end{cases}
$$
Where κ = − 2 m E ℏ 2 = m V 0 ℏ 2 .
The energy is given by ϵ 1 = ϵ 2 = − m V 0 2 2 ℏ 2
The wave function of a single delta peak is given by
ψ 1 ( x ) = m V 0 ℏ e − m V 0 ℏ 2 | x − x 1 |
ψ 2 ( x ) can be found by replacing x 1 by x 2
H = − m V 0 2 ℏ 2 ( 1 / 2 + exp ( − 2 m V 0 ℏ 2 | x 2 − x 1 | ) exp ( − m V 0 ℏ 2 | x 2 − x 1 | ) exp ( − m V 0 ℏ 2 | x 2 − x 1 | ) 1 / 2 + exp ( − 2 m V 0 ℏ 2 | x 2 − x 1 | ) )
ϵ ± = β ( 1 / 2 + exp ( − 2 α ) ± exp ( − α ) )
Where β = − m V 0 2 ℏ 2 and α = m V 0 ℏ 2 | x 2 − x 1 |
Question 3
1.
H E = e x E ,
2.
H ^ = ( E 0 − t − t E 0 ) + ( ⟨ 1 | e x E | 1 ⟩ ⟨ 1 | e x E | 2 ⟩ ⟨ 2 | e x E | 1 ⟩ ⟨ 2 | e x E | 2 ⟩ ) = ( E 0 − γ − t − t E 0 + γ ) ,
where γ = e d E / 2 and have used \(⟨ 1 | e x E | 1 ⟩ = − e d E / 2 ⟨ 1 | 1 ⟩ = − e d E / 2 \)
3.
The eigenstates of the Hamiltonian are given by:
E ± = E 0 ± t 2 + γ 2
The ground state wave function is:
| ψ ⟩ = t ( γ + γ 2 + t 2 ) 2 + t 2 ( γ + t 2 + γ 2 t 1 ) | ψ ⟩ = γ + t 2 + γ 2 ( γ + γ 2 + t 2 ) 2 + t 2 | 1 ⟩ + t ( γ + γ 2 + t 2 ) 2 + t 2 | 2 ⟩
4.
P = − 2 γ 2 E ( 1 γ 2 + t 2 )