from matplotlib import pyplot as plt import numpy as np from math import pi
Solutions for lecture 11 exercises¶
Exercise 1: Bloch's model¶
Subquestion 1¶
It must obey the crystal symmetry, such as the translational symmetry of the lattice described by the lattice vectors
Subquestion 2¶
From the periodicity of the wavefunction with the real space lattice vectors, it follows that the kinetic part of the Hamiltonian, here denoted
Subquestion 3¶
\begin{align}
\hat{T}_{\alpha,\beta,\gamma}u_n(\mathbf{r})e^{i\mathbf{k}\cdot\mathbf{r}}&=e^{-i\mathbf{k}\cdot (\alpha \mathbf{a}_1+\beta \mathbf{a}_2 + \gamma \mathbf{a}_3)} u_n(\mathbf{r})e^{i\mathbf{k}\cdot \mathbf{r}}\
\end{align}
The eigenfunctions of
Subquestion 4¶
\begin{equation} \nabla^2\psi_n(\mathbf{r})=e^{i\mathbf{k}\cdot\mathbf{r}}\left[ \nabla^2 u_n(\mathbf{r})-k^2u_n(\mathbf{r})+2i\mathbf{k}\nabla u_n(\mathbf{r}) \right]. \end{equation} Once this is explicitly written in the Schr. eqn, the complex exponentials cancel out.
Subquestion 5¶
Exercise 2: The Central Equation in 1D¶
Subquestion 1¶
All
Subquestion 2¶
\begin{equation}
\phi_n(x)=\frac{1}{\sqrt{\Omega}} \exp\left[i \left(k_0+\frac{2\pi n}{a}\right)x \right]
\end{equation}
Subquestion 3¶
def dispersions(N = 5): x0 = np.linspace(-N*2*pi,N*2*pi,2*N+1) x = np.tile(np.linspace(-N*pi,N*pi,500),(2*N+1,1)) y = [] for i, offset in enumerate(x0): y.append((x[i]-offset)**2) plt.figure(figsize=(5,5)) plt.axvspan(-pi, pi, alpha=0.2, color='red') for i in range(2,9): plt.plot(x[i],y[i]) plt.axvline(1+x0[i],0,1,color='k') plt.text(1.2-2*pi,37,'$k_{-1}$',fontsize=16) plt.text(1.2,37,'$k_0$',fontsize=16) plt.text(1.2+2*pi,37,'$k_1$',fontsize=16) plt.text(-2,59,'1st BZ',fontsize=19) plt.axhline(0.8,0,1,linestyle='dashed') plt.axhline(28,0,1,linestyle='dashed') plt.axhline(53,0,1,linestyle='dashed') plt.xlim([-3*pi,3*pi]) plt.ylim([0,70]) plt.xlabel('$k$',fontsize=19) plt.ylabel('$E$',fontsize=19) plt.xticks((-2*pi, -pi, 0 , pi,2*pi),('$-2\pi/a$','$-\pi/a$','$0$','$\pi/a$','$2\pi/a$'),fontsize=15) plt.yticks((1,27,54),('$E_0$','$E_1$','$E_{-1}$')) dispersions(5)
Subquestion 4¶
First the kinetic term,
Subquestion 5¶
From the expression for the energy, it is clear that the difference with respect to the free electron model is given by the Fourier component
Exercise 3: The Tight Binding Model versus the Nearly Free Electron Model¶
Subquestion 1¶
We construct the Hamiltonian (note that we have exactly one delta-peak per unit cell of the lattice),
\begin{equation}
\hat{H}=
Subquestion 2¶
See the lecture notes!
Subquestion 3¶
We split the Hamiltonian into two parts
Similarly, we can calculate
In the limit
Subquestion 4¶
.. | Lower Band minimum | Lower Band Width |
---|---|---|
TB model | ||
NFE model |
Subquestion 5¶
Notice which approximations were made! For large