from matplotlib import pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable import numpy as np from scipy.optimize import curve_fit from scipy.integrate import quad from common import draw_classic_axes, configure_plotting configure_plotting()
Solutions for lecture 1 exercises¶
Warm-up exercises¶
- An ideal gas only contains 3 positional degrees of freedom.
- \(C = 2k_B\).
- See image below (with \(T_1 < T_2\))
- Minus sign in the exponent. This would result in \(n_B(T = 0) = -1\), which is not physical.
- See plot with slider
fig, ax = plt.subplots() omega = np.linspace(0.1, 3) T = [1,2] ax.plot(omega, 1/(np.exp(omega/T[0]) - 1), label = r'$T_1$') ax.plot(omega, 1/(np.exp(omega/T[1]) - 1), label = r'$T_2$') ax.set_ylim([0,3]) ax.set_xlim([0,3]) ax.set_xlabel('$\hbar \omega$') ax.set_xticks([0]) ax.set_xticklabels(['$0$']) ax.set_ylabel('$n_B$') ax.set_yticks([0,1, 2]) ax.set_yticklabels(['$0$','$1$', '$2$']) ax.legend() draw_classic_axes(ax, xlabeloffset=.2)
Exercise 1: Heat capacity of a classical oscillator.¶
-
The answer is
\[ Z = \int_{-\infty}^{\infty}dp \int_{-\infty}^{\infty} dx e^{-\frac{\beta}{2m}p^2-\frac{\beta k}{2}x^2} = \sqrt{\frac{2\pi m}{\beta}}\sqrt{\frac{2\pi}{\beta k}} = \frac{2\pi}{\beta}\sqrt{\frac{m}{k}}, \]where we used \(\int_{-\infty}^{\infty}e^{-\alpha x^2} = \sqrt{\frac{\pi}{\alpha}}\).
2.
$$
\langle E \rangle = -\frac{1}{Z}\frac{\partial Z}{\partial \beta} = \frac{1}{\beta}
$$
3. $$ C = \frac{\partial\langle E\rangle}{\partial T} = k_B $$
The heat capacity is temperature independent.
Exercise 2: Quantum harmonic oscillator.¶
1.
$$
Z = \sum_{n = 0}^{\infty} e^{-\beta\hbar\omega(n + 1/2)} = e^{-\beta\hbar\omega/2}\frac{1}{1 - e^{-\beta\hbar\omega}} = \frac{1}{2\sinh(\beta\hbar\omega/2)},
$$
where we used $\sum_{n = 0}^{\infty}r^n = \frac{1}{1 - r}$.
2.
$$
\langle E\rangle = -\frac{1}{Z}\frac{\partial Z}{\partial\beta} = \frac{\hbar\omega}{2}\coth\frac{\beta\hbar\omega}{2} = \hbar\omega\left(\frac{1}{e^{\beta\hbar\omega} - 1} + \frac{1}{2}\right) = \hbar\omega\left(n_B(\beta\hbar\omega) + \frac{1}{2}\right).
$$
3.
$$
C = \frac{\partial \langle E\rangle}{\partial T} = \frac{\partial\langle E\rangle}{\partial\beta}\frac{\partial\beta}{\partial T} = k_B(\beta\hbar\omega)^2\frac{e^{\beta\hbar\omega}}{(e^{\beta\hbar\omega} - 1)^2}.
$$
In the high temperature limit \(\beta \rightarrow 0\) and \(e^{\beta\hbar\omega} \approx 1 + \beta\hbar\omega\), so \(C \rightarrow k_B\) which is the same result as in Exercise 1.3.
- Compare your result with the plot with the slider. Did you correctly indicate the where the Einstein temperature is?
5.
$$
\langle n\rangle = \frac{1}{Z}\sum_{n = 0}^{\infty} ne^{-\beta\hbar\omega(n + 1/2)} = 2\frac{e^{\beta\hbar\omega/2} - e^{-\beta\hbar\omega/2}}{2}e^{-\beta\hbar\omega/2}\frac{e^{-\beta\hbar\omega}}{(1 - e^{-\beta\hbar\omega})^2} = \frac{1}{e^{\beta\hbar\omega} - 1},
$$
where we used $\sum_{n = 0}^{\infty}nr^n = \frac{r}{(1 - r)^2}$.
Exercise 3: Total heat capacity of a diatomic material.¶
-
Use the formula \(\omega = \sqrt{\frac{k}{m}}\).
-
Energy per atom is given by
\[ E = \frac{N_{^6Li}}{N}\hbar\omega_{^6Li}(2 + 1/2) + \frac{N_{^7Li}}{N}\hbar\omega_{^7Li}(4 + 1/2). \] -
Energy per atom is given by
\[ E = \frac{N_{^6Li}}{N}\hbar\omega_{^6Li}\left(n_B(\beta\hbar\omega_{^6Li}) + \frac{1}{2}\right) + \frac{N_{^7Li}}{N}\hbar\omega_{^7Li}\left(n_B(\beta\hbar\omega_{^7Li}) + \frac{1}{2}\right). \] -
Heat capacity per atom is given by
\[ C = \frac{N_{^6Li}}{N}C_{^6Li} + \frac{N_{^7Li}}{N}C_{^7Li}, \]
where the heat capacities are calculated with the formula from Excercise 2.4.