Skip to content
    from matplotlib import pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable

import numpy as np
from scipy.optimize import curve_fit
from scipy.integrate import quad

from common import draw_classic_axes, configure_plotting

configure_plotting()
  

Solutions for lecture 2 exercises

Warm-up exercises

  1. For low T, 1/T1/T \rightarrow \infty. The heat capacity is then given as:

    C lowT9NkB(TTD)30x4ex(ex1)2dx.C \overset{\mathrm{low \: T}}{\approx} 9Nk_{\mathrm{B}}\left(\frac{T}{T_{D}}\right)^3\int_0^{\infty}\frac{x^4{\mathrm{e}}^x}{({\mathrm{e}}^x-1)^2}{\mathrm{d}}x.
  2. See plot below (shown for TD,1<TD,2T_{D,1} < T_{D,2})

  3. The polarization describes the direction of the motion of the atoms in the wave with respect to the direction in which the wave travels. In 3D, there are only 3 different polarizations possible.
  4. The integral can be expressed as dkxdky=kdkdϕ\int dk_x dk_y = \int k dk d\phi

  5. The Debye frequency ωD\omega_D is the frequency of the vibrational mode with the highest eigenfrequency. It has corresponding Debye temperature TD=ωD/kBT_D = \hbar\omega_D/k_B, which is the temperature above which all the vibrational modes in the system become excited

  6. The wavelength is of the order of the interatomic spacing:

    λ=(43π)1/3a.\lambda = (\frac{4}{3}\pi)^{1/3} a.
fig, ax = plt.subplots()
T = np.linspace(0.1, 3)
T_D = [1,2]
ax.plot(T, (T/T_D[0])**3, 'b-', label = r'$T_{D,1}$')
ax.plot(T, (T/T_D[1])**3, 'r-', label = r'$T_{D,2}$')
ax.set_ylim([0,3])
ax.set_xlim([0,3])
ax.set_xlabel('$T$')
ax.set_xticks([0])
ax.set_xticklabels(['$0$'])
ax.set_ylabel('$C$')
ax.set_yticks([0])
ax.set_yticklabels(['$0$'])
ax.legend();

svg

Exercise 1: Deriving the density of states for the linear dispersion relation of the Debye model

  1. ω=vsk\omega = v_s|\mathbf{k}|
  2. The distance between nearest-neighbour points in k\mathbf{k}-space is 2π/L2\pi/L. The density of k\mathbf{k}-points in 1, 2, and 3 dimensions is L/(2π)L/(2\pi), L2/(2π)2L^2/(2\pi)^2, and L3/(2π)3L^3/(2\pi)^3 respectively.
  3. Express the number of states between frequencies 0<ω<ω00<\omega<\omega_0 as an integral over k-space. Do so for 1D, 2D and 3D. Do not forget the possible polarizations. We assume that in dd dimensions there are dpd_p polarizations.

    Nstates, 1D=1pL2π0k02dkNstates, 2D=2p(L2π)20k02πkdkNstates, 3D=3p(L2π)30k04πk2dk\begin{align*}N_\text{states, 1D} & = 1_p \frac{L}{2\pi} \int_0^{k_0} 2 dk \\N_\text{states, 2D} & = 2_p \left(\frac{L}{2\pi}\right)^2 \int_0^{k_0} 2\pi k dk \\N_\text{states, 3D} & = 3_p \left(\frac{L}{2\pi}\right)^3 \int_0^{k_0} 4\pi k^2 dk\end{align*}
  4. We use k=k=ω/vsk=\mathbf{k}| = \omega/v_s and dk=dω/vsdk = d\omega/v_s to get

    Nstates, 1D=1pL2π0ω021vsdω:=0ω0g1D(ω)dωNstates, 2D=2p(L2π)20ω02πωvs2dω:=0ω0g2D(ω)dωNstates, 3D=3p(L2π)30ω04πω2vs3dω:=0ω0g3D(ω)dω\begin{align*}N_\text{states, 1D} & = 1_p \frac{L}{2\pi} \int_0^{\omega_0} 2 \frac{1}{v_s} d\omega := \int_0^{\omega_0} g_{1D}(\omega) d\omega \\N_\text{states, 2D} & = 2_p \left(\frac{L}{2\pi}\right)^2 \int_0^{\omega_0} 2\pi \frac{\omega}{v_s^2} d\omega := \int_0^{\omega_0} g_{2D}(\omega) d\omega \\N_\text{states, 3D} & = 3_p \left(\frac{L}{2\pi}\right)^3 \int_0^{\omega_0} 4\pi \frac{\omega^2}{v_s^3} d\omega := \int_0^{\omega_0} g_{3D}(\omega) d\omega\end{align*}

    The integral boundaries set the frequency region in which you calculate the density of states.

  5. The density of states is the number of states per unit frequency. It has units of 1 over frequency

Exercise 2: Debye model in 2D

  1. The energy stored in the vibrational modes of a two-dimensional Debye solid is:

    E=2pL24π20(nB(ω(k))+12)ω(k)dk=L2πv22β30βωDx2ex1dx+E0\begin{align*}E & = 2_p \frac{L^2}{4\pi^2}\int_0^{\infty}(n_B(\omega(\mathbf{k}))+\frac{1}{2})\hbar\omega(\mathbf{k}) d\mathbf{k} \\& = \frac{L^2}{\pi v^2\hbar^2\beta^3}\int_{0}^{\beta\hbar\omega_D}\frac{x^2}{e^{x} - 1}dx + E_0\end{align*}
  2. The high-TT limit implies β0\beta \rightarrow 0. Therefore, nBkBT/ωn_B \approx k_B T/\hbar\omega, and the integral becomes particularly illuminating:

    E=0ωDωnB(ω)g(ω)dω0ωDkBTg(ω)dω=NmodeskBTE = \int_{0}^{\omega_D} \hbar\omega n_B(\omega) g(\omega) d\omega \approx \int_{0}^{\omega_D} k_B T g(\omega) d\omega = N_\text{modes} k_B T

    where we neglected the zero-point energy. In 2D, we have Nmodes=2pNatomsN_\text{modes} = 2_p N_\text{atoms}, so that we recover the 2D law of Dulong–Petit Cv=dE/dT=2kBC_v = dE/dT = 2 k_B per atom.

  3. In the low temperature limit, the high-energy modes are not excited so we can safely let the upper boundary of the integral go to infinity. For convenience, we write g(ω)=αωg(\omega) = \alpha \omega, with α=L2πvs2\alpha = \frac{L^2}{\pi v_s^2}. We get

    E=0ωDωg(ω)eω/kBT1dωαk3T320x2ex1dxE = \int_0^{\omega_D}\frac{\hbar\omega g(\omega)}{e^{\hbar\omega/k_B T}- 1}d\omega \approx \alpha\frac{k^3 T^3}{\hbar^2}\int_0^\infty\frac{x^2}{e^x-1}dx

    From which we find Cv=dE/dT=KT2C_v = dE/dT = K T^2, with

    K=3αk320x2ex1dxK = 3\alpha\frac{k^3}{\hbar^2}\int_0^\infty\frac{x^2}{e^x-1}dx

Exercise 3: Longitudinal and transverse vibrations with different sound velocities

  1. The key idea is that the total energy in the individual harmonic oscillators (the vibrational modes) is the sum of the energies in the individual oscillators: E=0ωDωg(ω)eβω1dω+EZE = \int_0^{\omega_D}\frac{\hbar \omega g(\omega)}{e^{\beta\hbar\omega} - 1}d\omega + E_Z, where g(ω)=g(ω)+g(ω)g(\omega) = g_\parallel(\omega) + g_\perp(\omega). Using

    g=1pL32π2ω2v3,g=2pL32π2ω2v3,\begin{align*}g_\parallel & = 1_p \frac{L^3}{2\pi^2} \frac{\omega^2}{v_\parallel^3}, \\g_\perp & = 2_p \frac{L^3}{2\pi^2} \frac{\omega^2}{v_\perp^3},\end{align*}

    we get

    E=L3kB4T42π23(2v3+1v3)0βωDx3ex1dx.E = \frac{L^3 k_B^4 T^4}{2\pi^2\hbar^3}\left(\frac{2}{v_\perp^3} + \frac{1} {v_\parallel^3}\right)\int_{0}^{\beta\hbar\omega_D}\frac{x^3}{e^{x} - 1}dx.
  2. As in exercise 1, in the high-T limit, we have $\beta \rightarrow 0. Therefore, nBkBT/ωn_B \approx k_B T/\hbar\omega and the integral for EE becomes:

    E=0ωDωnB(ω)g(ω)dω0ωDkBTg(ω)dω+EZ=NmodeskBT+EZE = \int_{0}^{\omega_D} \hbar\omega n_B(\omega) g(\omega) d\omega \approx \int_{0}^{\omega_D} k_B T g(\omega) d\omega +E_Z = N_\text{modes} k_B T + E_Z

    and we are left with the Dulong-Petit law C=3NatomskBC = 3N_\text{atoms} k_B.

  3. In the low temperature limit, we can let the upper integral boundary go to infinity as in exercise 1. This yields

    C2π2kB4L3153(2v3+1v3)T3C \approx \frac{2\pi^2 k_B^4 L^3}{15\hbar^3}\left(\frac{2}{v_\perp^3} + \frac{1}{v_\parallel^3}\right)T^3

    where we used 0x3ex1dx=π415\int_{0}^{\infty}\frac{x^3}{e^{x} - 1}dx = \frac{\pi^4}{15}.

Exercise 4: Anisotropic sound velocities

In this case, the velocity depends on the direction. Note however that, in contrast with the previous exercise, the polarization does not affect the dispersion of the waves. We get

E=3p(L2π)3ω(k)eβω(k)1dkxdkydkz+EZ=3p(L2π)31vxvyvzκeβκ1dκxdκydκz+EZ,\begin{align*}E =& 3_p\left(\frac{L}{2\pi}\right)^3 \int \frac{\hbar\omega(\mathbf{k})}{e^{\beta\hbar\omega(\mathbf{k})}-1} dk_x dk_y dk_z + E_Z \\=& 3_p\left(\frac{L}{2\pi}\right)^3\frac{1}{v_x v_y v_z} \int \frac{\hbar\kappa}{e^{\beta\hbar\kappa} - 1}d\kappa_x d\kappa_y d\kappa_z + E_Z,\end{align*}

where we made the substitutions κx=kxvx,κy=kyvy,κz=kzvz\kappa_x = k_x v_x,\kappa_y = k_y v_y, \kappa_z = k_z v_z so that ω=κ\omega = \kappa. Going to spherical coordinates:

E=3pL32π21vxvyvz0κDκ3eβκ1dκ+EZ\begin{align*}E &= \frac{3_p L^3}{2\pi^2}\frac{1}{v_x v_y v_z}\int_{0}^{\kappa_D} \frac{\hbar\kappa^3}{e^{\beta\hbar\kappa} - 1} d\kappa + E_Z\end{align*}

To calculate the specific heat C=dEdTC = \frac{dE}{dT}, let's differentiate this expression directly:

C=dEdT=3pL32π21vxvyvz0κDddT(κ3eβκ1)dκ=3pL32π21vxvyvz0κDκ3κeβκ(eβκ1)2dβdTdκ\begin{align*}C &= \frac{dE}{dT} = \frac{3_p L^3}{2\pi^2}\frac{1}{v_x v_y v_z}\int_{0}^{\kappa_D} \frac{d}{dT}\left(\frac{\hbar\kappa^3}{e^{\beta\hbar\kappa} - 1}\right) d\kappa \\&= \frac{3_p L^3}{2\pi^2}\frac{1}{v_x v_y v_z}\int_{0}^{\kappa_D} \frac{\hbar\kappa^3 \cdot \hbar\kappa \cdot e^{\beta\hbar\kappa}}{(e^{\beta\hbar\kappa} - 1)^2} \cdot \frac{d\beta}{dT} d\kappa\end{align*}

Since β=1kBT\beta = \frac{1}{k_B T}, we have dβdT=1kBT2=βT\frac{d\beta}{dT} = -\frac{1}{k_B T^2} = -\frac{\beta}{T}. Substituting this:

C=3pL32π21vxvyvz0κD2κ4eβκ(eβκ1)2βTdκ=3pL32π21vxvyvz2βT0κDκ4eβκ(eβκ1)2dκ\begin{align*}C &= - \frac{3_p L^3}{2\pi^2}\frac{1}{v_x v_y v_z}\int_{0}^{\kappa_D} \frac{\hbar^2\kappa^4 e^{\beta\hbar\kappa}}{(e^{\beta\hbar\kappa} - 1)^2} \cdot \frac{\beta}{T} d\kappa \\&= - \frac{3_p L^3}{2\pi^2}\frac{1}{v_x v_y v_z} \cdot \frac{\hbar^2\beta}{T}\int_{0}^{\kappa_D} \frac{\kappa^4 e^{\beta\hbar\kappa}}{(e^{\beta\hbar\kappa} - 1)^2} d\kappa\end{align*}

Now, we can make the substitution x=βκx = \beta\hbar\kappa, which gives dκ=dxβd\kappa = \frac{dx}{\beta\hbar} and changes our limits to 0βκD\int_{0}^{\beta\hbar\kappa_D}:

C=3pL32π21vxvyvz2βT0βκD(xβ)4ex(ex1)2dxβ=3pL32π21vxvyvz2βT1(β)50βκDx4ex(ex1)2dx=3pL32π21vxvyvz1Tβ430βκDx4ex(ex1)2dx\begin{align*}C &= - \frac{3_p L^3}{2\pi^2}\frac{1}{v_x v_y v_z} \cdot \frac{\hbar^2\beta}{T} \cdot \int_{0}^{\beta\hbar\kappa_D} \left(\frac{x}{\beta\hbar}\right)^4 \frac{e^x}{(e^x - 1)^2} \cdot \frac{dx}{\beta\hbar} \\&= - \frac{3_p L^3}{2\pi^2}\frac{1}{v_x v_y v_z} \cdot \frac{\hbar^2\beta}{T} \cdot \frac{1}{(\beta\hbar)^5} \int_{0}^{\beta\hbar\kappa_D} \frac{x^4 e^x}{(e^x - 1)^2} dx \\&= - \frac{3_p L^3}{2\pi^2}\frac{1}{v_x v_y v_z} \cdot \frac{1}{T\beta^4\hbar^3} \int_{0}^{\beta\hbar\kappa_D} \frac{x^4 e^x}{(e^x - 1)^2} dx\end{align*}

Since 1Tβ4=kB4T31=kB4T3\frac{1}{T\beta^4} = \frac{k_B^4 T^3}{1} = k_B^4 T^3, we get:

C=3p3pL32π21vxvyvzkB4T330βκDx4ex(ex1)2dx=3p3pL3kB4T32π231vxvyvz0βκDx4ex(ex1)2dx\begin{align*}C &= -3_p \frac{3_p L^3}{2\pi^2}\frac{1}{v_x v_y v_z} \cdot \frac{k_B^4 T^3}{\hbar^3} \int_{0}^{\beta\hbar\kappa_D} \frac{x^4 e^x}{(e^x - 1)^2} dx \\&= 3_p \frac{3_p L^3 k_B^4 T^3}{2\pi^2\hbar^3}\frac{1}{v_x v_y v_z} \int_{0}^{\beta\hbar\kappa_D} \frac{x^4 e^x}{(e^x - 1)^2} dx\end{align*}

This is similar to the result with isotropic linear dispersion, with the difference being the factor 1/(vxvyvz)1/(v_x v_y v_z) instead of 1/v31/v^3.